If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2=(m+4)(2-m)
We move all terms to the left:
4m^2-((m+4)(2-m))=0
We add all the numbers together, and all the variables
4m^2-((m+4)(-1m+2))=0
We multiply parentheses ..
4m^2-((-1m^2+2m-4m+8))=0
We calculate terms in parentheses: -((-1m^2+2m-4m+8)), so:We get rid of parentheses
(-1m^2+2m-4m+8)
We get rid of parentheses
-1m^2+2m-4m+8
We add all the numbers together, and all the variables
-1m^2-2m+8
Back to the equation:
-(-1m^2-2m+8)
4m^2+1m^2+2m-8=0
We add all the numbers together, and all the variables
5m^2+2m-8=0
a = 5; b = 2; c = -8;
Δ = b2-4ac
Δ = 22-4·5·(-8)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*5}=\frac{-2-2\sqrt{41}}{10} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*5}=\frac{-2+2\sqrt{41}}{10} $
| -9x=-1-80 | | -2b+1=25 | | 5(x+5)=4(x-2) | | 2p-2(4-2p)=3(p-4)-11 | | 21x-9=5(4x+3)-6 | | 3/4(5x+6)=34 | | y^2+18y-34=0 | | 2/3(4/5y+3/6)=2/3(2/4-3/5) | | 2000-100x=x | | 4x-(9x+5)=8-5x | | 4m^2=(m+4)(2+m) | | 7x^2-9-33=0 | | 5t+8=-1t-4 | | 18(x-1)=-6(3-x)+12 | | 2x^2+13x+15=(x+5) | | 44+x=57 | | 5t-8=-7t+4 | | 7x+3x−2x=32. | | 3-1/2(6x+10)=5x+8-10x | | -27+20w=11 | | 6(d+3)=9(d+9) | | w^2-4W+1=0 | | 4x^2+2-38=0 | | 4x2=3 | | 3x^2+5√5x-10=0 | | 4+7x5=7x(5-4) | | 4y=-8y2-2 | | y^2-18y-219=0 | | 3w2-9=0 | | 4x2+9=0 | | 6p2+3p-2=0 | | 5/2x-7/2=23/2 |